Quantum Graphs: Applications to Quantum Chaos and Universal Spectral Statistics

نویسنده

  • Sven Gnutzmann
چکیده

During the last years quantum graphs have become a paradigm of quantum chaos with applications from spectral statistics to chaotic scattering and wave function statistics. In the first part of this review we give a detailed introduction to the spectral theory of quantum graphs and discuss exact trace formulae for the spectrum and the quantum-to-classical correspondence. The second part of this review is devoted to the spectral statistics of quantum graphs as an application to quantum chaos. Especially, we summarise recent developments on the spectral statistics of generic large quantum graphs based on two approaches: the periodic-orbit approach and the supersymmetry approach. The latter provides a condition and a proof for universal spectral statistics as predicted by random-matrix theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral statistics in chaotic systems with a point interaction

We consider quantum systems with a chaotic classical limit that are perturbed by a point-like scatterer. The spectral form factor K(τ) for these systems is evaluated semiclassically in terms of periodic and diffractive orbits. It is shown for order τ 2 and τ 3 that off-diagonal contributions to the form factor which involve diffractive orbits cancel exactly the diagonal contributions from diffr...

متن کامل

Universality in spectral statistics of open quantum graphs.

The quantum evolution maps of closed chaotic quantum graphs are unitary and known to have universal spectral correlations matching predictions of random matrix theory. In chaotic graphs with absorption the quantum maps become nonunitary. We show that their spectral statistics exhibit universality at the soft edges of the spectrum. The same spectral behavior is observed in many classical nonunit...

متن کامل

Geometrical theory of diffraction and spectral statistics

We investigate the influence of diffraction on the statistics of energy levels in quantum systems with a chaotic classical limit. By applying the geometrical theory of diffraction we show that diffraction on singularities of the potential can lead to modifications in semiclassical approximations for spectral statistics that persist in the semiclassical limit ~ → 0. This result is obtained by de...

متن کامل

Universal spectral statistics in Wigner-Dyson, chiral, and Andreev star graphs. I. Construction and numerical results.

In a series of two papers we investigate the universal spectral statistics of chaotic quantum systems in the ten known symmetry classes of quantum mechanics. In this first paper we focus on the construction of appropriate ensembles of star graphs in the ten symmetry classes. A generalization of the Bohigas-Giannoni-Schmit conjecture is given that covers all these symmetry classes. The conjectur...

متن کامل

Nodal domains statistics: a criterion for quantum chaos.

We consider the distribution of the (properly normalized) numbers of nodal domains of wave functions in 2D quantum billiards. We show that these distributions distinguish clearly between systems with integrable (separable) or chaotic underlying classical dynamics, and for each case the limiting distribution is universal (system independent). Thus, a new criterion for quantum chaos is provided b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006